
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 2, February 2018, Pages 845–860
http://dx.doi.org/10.1090/proc/13586

Article electronically published on October 23, 2017

ADS 3-MANIFOLDS AND HIGGS BUNDLES

DANIELE ALESSANDRINI AND QIONGLING LI

(Communicated by Michael Wolf)

Abstract. In this paper we investigate the relationships between closed AdS
3-manifolds and Higgs bundles. We have a new way to construct AdS struc-
tures that allows us to see many of their properties explicitly, for example we
can recover the very recent formula by Tholozan for their volume.

We give natural foliations of the AdS structure with time-like geodesic
circles and we use these circles to construct equivariant minimal immersions
of the Poincaré disc into the Grassmannian of time-like 2-planes of R2,2.

1. Introduction

The non-abelian Hodge correspondence, mainly developed by Hitchin [12], Don-
aldson [6], Simpson [19] and Corlette [4], gives a homeomorphism between the
moduli space of polystable G-Higgs bundles for a semi-simple Lie group G over a
Riemann surface Σ, and the character variety of representations of π1(Σ) into G.
Because of this correspondence, the theory of Higgs bundles has been very useful
in the study of the topological structure of the character varieties. More difficult is
to get geometric information about a single representation from the corresponding
Higgs bundle. This problem is one of the motivations for this paper.

In this paper we investigate the relationships between Higgs bundles and geo-
metric structures on 3-manifolds. These relationships were explored in Baraglia’s
thesis [1], and more recently in the present work, in some other work in progress of
the authors and of the authors with Brian Collier. A geometric structure is deter-
mined by a developing pair consisting of a representation and a developing map (see
Section 2). The Higgs bundle encodes the representation through the non-abelian
Hodge correspondence. To obtain a geometric structure, we need to describe the
developing map in terms of the Higgs bundle data.

The geometric structures we study in this paper are the 3-dimensional Anti-de
Sitter structures (abbreviated as AdS structures), Lorentz metrics with constant
curvature −1. They initially arose as models for general relativity, but their rich
mathematical theory makes them very interesting geometric objects, independently
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on physical applications. The theories of closed and open AdS 3-manifolds are quite
different, here we will deal only with closed AdS 3-manifolds.

The AdS 3-manifolds are locally modeled on the Anti-de Sitter 3-space M (see
Section 2), whose isometry group is O(2, 2). If ρ1, ρ2 are two representations of
the fundamental group of a closed surface S in SL(2,R), then their tensor product
ρ1 ⊗ ρ2 is a representation in O(2, 2). We will use the theory of Higgs bundles
for SL(2,R) to describe the Higgs bundles for the tensor product ρ1 ⊗ ρ2, and to
construct a circle bundle U over S. To obtain our results, we also complete the
description of the Higgs bundles for SL(2,R); see Theorems 3.1 and 4.1.

If ρ1, ρ2 satisfy a condition of domination depending on the choice of a conformal
structure, using the technique of the graph of geometric structures, we construct
an AdS structure on U with holonomy ρ1 ⊗ ρ2 (see Section 5).

In Section 6, using some results by Deroin-Tholozan [5] and Tholozan [21], one
can see that the domination condition we consider is equivalent to the classical dom-
ination condition defined by Salein. Therefore we give a new proof of a fundamental
theorem originally proven by Salein [18], and later reproven in [10].

In our proof, the structure we construct has a natural parametrization and some
properties of the AdS manifold can be seen easily using this parametrization. We
can determine the underlying topology of the AdS manifold, and we can see that
the fibers of the circle bundle U are time-like geodesics for the AdS structure (see
Section 7).

We can also compute the volume of the AdS structure with an explicit formula
that shows that the volume only depends on the Euler numbers of the representa-
tions ρ1, ρ2. This result was cited as Question 2.3 in the list of open problems [2].
It was first answered some months before us in Tholozan’s thesis [22]; see also [23].
Labourie [17] then related the volumes of AdS 3-manifolds with the Chern-Simons
invariants. In Section 8, we give a new proof of the formula.

In this way, we can recover much of the theory of closed AdS 3-manifolds, with
new methods based mainly on Higgs bundles, harmonic maps and the study of
solutions of Hitchin’s equations.

In Section 7, given an AdS manifold with holonomy ρ1 ⊗ ρ2, we use the AdS
structure on the fibers of the circle bundle to construct a ρ1⊗ρ2-equivariant minimal
immersion of the hyperbolic plane in the Grassmannian Gr+(2, 4) of time-like 2-
planes in R

2,2, equipped with its natural pseudo-Riemannian metric. This is an
original result for this paper. This gives a characterization of the representations
that admit equivariant minimal surfaces in Gr+(2, 4). We can also characterize
the conformal structure of the minimal surface: it is the conformal structure with
vanishing Pfaffian found by Tholozan in [21].

At first glance, it seems that we just construct and study some examples of closed
AdS 3-manifolds. We would like to remark that these examples lead to the general
case, by understanding them we can understand all closed AdS 3-manifolds: from
the results of Klingler [15], Kulkarni and Raymond [16] and Kassel [14], given a
closed AdS 3-manifold Y , there exist two representations ρ1, ρ2 of a surface group
in SL(2,R) with the property that ρ1 strictly dominates ρ2, such that Y and the
quotient M/ρ1 ⊗ ρ2 have a common finite covering.
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2. Anti-de Sitter 3-manifolds

Given a 3-manifold N , an Anti-de Sitter structure on N , or briefly an AdS struc-
ture on N , is a Lorentz metric of constant curvature −1. Recall that a Lorentz
metric is a pseudo-Riemannian metric of signature (2, 1).

Every AdS structure is locally isometric to a model space, the Anti-de Sitter
space, that can be described explicitly as follows. Let Q denote a non-degenerate
symmetric bilinear form on R4 of signature (2, 2). Sometimes, we write the pair
(R4, Q) as R2,2. The Anti-de Sitter space is identified with the unit sphere of Q:

M = {x ∈ R
4 | Q(x, x) = 1}.

For every point x ∈ M, the tangent space to M at x is given by x⊥Q, the
orthogonal with reference to Q. The Lorentz metric is given by the restriction of
the bilinear form Q to the tangent space TxM = x⊥Q, a bilinear form of signature
(2, 1). A tangent vector v ∈ TxM is time-like if Q(v, v) > 0, and space-like if
Q(v, v) < 0.

The group of isometries of M is the orthogonal group preserving Q, here denoted
by O(2, 2). Here we will mainly use the subgroup SO0(2, 2), the group of isometries
preserving both space and time orientation. It can be identified with SL(2,R) ×
SL(2,R)/Z2 in the following way. Let ω be a volume form on R2. Given A,B ∈
SL(2,R), they act on R2 preserving ω, hence A ⊗ B acts on R2 ⊗ R2 preserving
the bilinear form Q = ω ⊗ ω. If A = B = −Id, the action is trivial. Note that Q is
symmetric and of signature (2, 2).

Given a 3-manifold N , we want to construct AdS structures on N . We will
use the model space M and mirror its local geometry on N . More precisely, N is
covered by open charts {(Ui, φi)}i∈I , where every φi is a diffeomorphism from Ui

to an open subset of M. Whenever two open sets Ui, Uj intersect, the transition
functions have to be locally the restrictions of elements of O(2, 2). If the transition
functions lie in SO0(2, 2), the structure has space and time orientation.

This construction comes from the theory of geometric structures, or (G,X)-
structures, where G is a Lie group acting transitively and effectively on a manifold
X. In our case, G = SO0(2, 2), and X = M. For the general theory of geometric
structures, the reader is referred to [7] or [24]. A (G,X)-structure is defined as a
maximal atlas of charts {(Ui, φi)}i∈I satisfying the properties given above.

An equivalent way to see a geometric structure is via the developing pair, (D, ρ),
where ρ : π1(N) → G is a representation called holonomy representation, and

D : Ñ → X is a ρ-equivariant local diffeomorphism, called a developing map. This
paper was inspired by the following question: given a representation ρ : π1(N) → G,
how can we construct a geometric structure on N with holonomy ρ?

To address this question, we can use another equivalent way to see a geometric
structure, called the graph of a geometric structure (see also [7] for more details).
Given a representation ρ : π1(N) → G, and an effective action of G on X, we can
construct a flat bundle p : B → N over N with fiber X, structure group G, and

monodromy equal to ρ. The total space is given by B = Xρ =
(
Ñ ×X

)
/π1(N),

where the group π1(N) acts diagonally on the product. The space Xρ has a natural

map to N = Ñ/π1(N) which is a fiber bundle. The flat structure on the product

Ñ × X descends to the quotient. The monodromy of the flat bundle B = Xρ is
exactly the representation ρ, so the flat bundle Xρ encodes the representation.
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To construct a geometric structure with holonomy ρ, we only need to add one
more piece of information, the developing map. We need to interpret the developing
map in the language of flat bundles. The notion of a ρ-equivariant map can be
translated very naturally: it is a section of the bundle Xρ. Given a section s : N →
Xρ, it can be lifted to the universal covering s̃ : Ñ → X̃ρ, where X̃ρ is the pull back

of Xρ to Ñ . Since X̃ρ = Ñ ×X, the projection on the second component gives a

ρ-equivariant map Ñ → X. Following [7], we call transverse section a section whose
associated ρ-equivariant map is a local diffeomorphism, i.e., a developing map of a
geometric structure.

In this paper we use the technique of the graph of geometric structures to con-
struct AdS structures with prescribed holonomy. Let S be an orientable closed
surface of genus g ≥ 2, and ρ1, ρ2 : π1(S) → SL(2,R) be two reductive represen-
tations. Their tensor product ρ = ρ1 ⊗ ρ2 is a representation in SO0(2, 2) by the
isomorphism SO0(2, 2) = (SL(2,R)× SL(2,R))/Z2 as explained in Section 2. Let
p : U → S be a circle bundle over S. The representation ρ induces

ρ̄ = ρ ◦ p∗ : π1(U) → SO0(2, 2),

a representation of π1(U) that is trivial on the fibers. We aim to construct an AdS
structure on the 3-manifold U with holonomy ρ̄.

We denote by E the vector bundle (R4)ρ → S. Since ρ is a representation in
SO0(2, 2), the bundle E is naturally equipped with a symmetric bilinear form Q
of signature (2, 2) on every fiber. The fiber bundle Mρ → S is a sub-bundle of
the bundle E, whose fibers are defined by the equation Q(v, v) = 1. To construct
an AdS structure on U , we need to consider the pull-back bundles p∗E → U and
p∗Mρ = Mρ̄ → U , and find a transverse section s : U → Mρ̄.

It is not possible to achieve this for every representation ρ1, ρ2 of π1(S), and for
every circle bundle U , so we need to add some hypotheses. To choose a suitable
circle bundle U , we need to understand the structure of the bundle E → S. Denote
by e1, e2 ∈ [2− 2g, 2g − 2] ∩ 2Z the Euler numbers of ρ1, ρ2 respectively. We show
in the next section that the bundle E can be split as a direct sum of two vector
bundles of rank 2, E = F1 ⊕ F2 such that F1 has Euler class |e2 − e1| and F2 has
Euler class |e1 + e2|. The two sub-bundles can be chosen such that F1 ⊥Q F2, and
such that F1 is time-like and F2 is space-like.

Let us choose U as the circle bundle U = {v ∈ F1 | Q(v, v) = 1}. This is the
unit part of F1, hence a circle bundle with Euler class |e2 − e1|. It has a natural
section s : U → Mρ̄, the tautological section that associates to every point v of U
the same point v seen as a point of Mρ̄.

The last thing needed to construct the AdS structure on U is to verify the
transversality condition of the section s. Since E is a vector bundle, its flat struc-
ture is described by a flat connection ∇, and the transversality condition can be
formulated in terms of the covariant derivatives of s with respect to ∇.

We prove the above claims in Sections 3 and 5, using the tool given by Higgs
bundles.

3. Higgs bundles and flat bundles

The two reductive SL(2,R) representations ρ1, ρ2 of the previous section, with
Euler numbers e1, e2, correspond to flat unimodular vector bundles (E1,∇1, ω1),
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(E2,∇2, ω2), where the ∇i’s are flat connections and the ωi’s are ∇i-parallel volume
forms. In a local frame, let us write ∇i = d+Ai, where Ai is the connection form.

The representation ρ = ρ1 ⊗ ρ2 corresponds to the flat bundle (E,∇, Q), where
E = E1⊗E2, Q = ω1⊗ω2, and the connection can be described, in the compatible
local tensor frame, as ∇ = d+A1 ⊗ Id + Id⊗A2.

We will also consider the corresponding complexified bundles (EC
i ,∇C

i , ω
C
i ) and

(EC,∇C, QC). There are anti-linear involutions τi : E
C
i → EC

i and τ : EC → EC,
such that Ei = {v ∈ EC

i | τi(v) = v} and E = {v ∈ EC | τ (v) = v}. The involution
is called the real structure. Hence the full structure on the complexified bundles is
(EC

i ,∇C
i , ω

C
i , τi) and (EC,∇C, QC, τ ).

To describe more explicitly the bundles EC
i , E

C, we will use the theory of Higgs
bundles, initially introduced by Hitchin [12] and Donaldson [6]. Choose a complex
structure Σ on the surface S and denote by K its canonical bundle. There is a

unique ρi-equivariant harmonic map ψi from Σ̃ to SL(2,C)/SU(2), the space of all
Hermitian metrics on C2. Hence, the ρi-equivariant harmonic map ψi corresponds
to a harmonic Hermitian metric Hi on the vector bundle EC

i .
Using this Hermitian metric Hi, we can uniquely decompose the flat connec-

tion ∇C
i into a sum of a unitary connection ∇Hi and a 1-form ψi valued in the

skew-Hermitian endomorphism of the bundle EC
i . The (0, 1)-part of ∇Hi defines a

holomorphic structure on EC
i , and the (1, 0)-part of ψi gives a holomorphic Higgs

field φi ∈ H0(Σ,End(EC
i )⊗K). Note that the harmonicity of the Hermitian metric

Hi ensures the holomorphicity of φi. In this way, from a flat SL(2,C) connection we
obtain a Higgs bundle for SL(2,C). The flatness of the connection ∇i is equivalent
to the condition that Hi is the solution to Hitchin’s equation

(3.1) F∇Hi + [φi, φ
∗Hi
i ] = 0,

where F∇Hi is the curvature of ∇Hi and φ∗Hi
i is the adjoint of φi with respect to

Hi. Conversely, given a stable Higgs bundle, there exists a unique Hermitian metric
solving Hitchin’s equation, giving rise to a flat connection ∇i = ∇Hi + φi + φ∗Hi

i .
This is the non-abelian Hodge correspondence for SL(2,C). It was later generalized
to reductive Lie groups by Corlette [4] and Simpson [19].

In our case, the flat connection on EC
i was actually an SL(2,R)-connection

and the associated ρi-equivariant harmonic maps ψi lie in a totally geodesic sub-
manifold H = SL(2,R)/SO(2) ⊂ SL(2,C)/SU(2). To parametrize the SL(2,R)-
representations, we need to impose some extra structure on the Higgs bundles,
which we call Higgs bundles for SL(2,R). This is described by Hitchin in [12],
and a more explicit description can be found in Gothen’s thesis [9], Section 2.2.2,
where he deals with the more general case of Higgs bundles for Sp(2n,R). From
this description one can see that the holomorphic bundle EC

i splits as a direct sum
of a holomorphic line bundle and its inverse:

(3.2) EC

1 = L⊕ L−1, EC

2 = N ⊕N−1,

where degL = 1
2e1 and degN = 1

2e2 (recall that e1, e2 are even integers).
In terms of this splitting, the Higgs fields are of the following form:

(3.3) φ1 =

(
0 α
β 0

)
, φ2 =

(
0 γ
δ 0

)
,

with α ∈ H0(Σ, L2K), β ∈ H0(Σ, L−2K), γ ∈ H0(Σ, N2K) and δ ∈ H0(Σ, N−2K).
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Theorem 3.1. In terms of the splitting of Ei as a direct sum of two line bundles,
the metric Hi is diagonal, i.e., it can be written as

H1 =

(
k−1 0
0 k

)
, H2 =

(
h−1 0
0 h

)
,

where k ∈ Γ(Σ, L̄⊗ L) and h ∈ Γ(Σ, N̄ ⊗N).

Proof. Higgs bundles for SL(2,R) have an SO(2,C) structure coming from the

pairing between L (or N) and L−1 (or N−1), given by Bi =

(
0 1
1 0

)
. View Bi :

Ei → E∗
i as a holomorphic isomorphism. Then B−1

i φT
i Bi is again a well-defined

Higgs field in H0(End(Ei) ⊗ K). One can formally check that Bi
T
(HT

i )
−1Bi is

the solution of Hitchin’s equation for the Higgs bundle (Ei, B
−1
i φT

i Bi). By formula

(3.3), B−1
i φT

i Bi = φi. Therefore, by the uniqueness of the solution to Hitchin’s

equation, we have Bi
T
(HT

i )
−1Bi = Hi (this is essentially Formula (7.2) in Hitchin’s

[13]). This equation and the condition det(Hi) = 1 imply the statement. �

Choosing a local holomorphic frame {ei, e∗i }, the flat SL(2,R)-connection ∇C
i is

given explicitly by

∇C

i = d+Ai = d+H−1
i ∂Hi + φi + φ

∗Hi
i .

The real structure τi : E
C
i → EC

i is given explicitly by:

τ1 : EC

1 � v =

(
v1
v2

)
→

(
0 k

k−1 0

)
v̄ =

(
kv̄2

k−1v̄1

)
∈ EC

1 ,

τ2 : EC

2 � v =

(
v1
v2

)
→

(
0 h

h−1 0

)
v̄ =

(
hv̄2

h−1v̄1

)
∈ EC

2 .

Finally, the volume form ωC
i is given by ωC

i = i√
2

(
0 −1
1 0

)
. This completes the

description of the bundle (EC
i ,∇C

i , ω
C
i , τi) given by the choice of Σ.

The non-abelian Hodge correspondence respects tensor products, i.e., the Higgs
bundle corresponding to the tensor product of two representations is the tensor
product of two Higgs bundles; see Simpson [20]. Therefore, to describe the bundle
(EC,∇C, QC, τ ) we just need to consider the tensor product of Higgs bundles:
• The holomorphic vector bundle is

EC = EC

1 ⊗ EC

2 = LN ⊕ LN−1 ⊕ L−1N ⊕ L−1N−1.

• The Higgs field is given by (see [20])

Φ = φ1 ⊗ Id + Id⊗ φ2 =

⎛
⎜⎜⎝
0 γ α 0
δ 0 0 α
β 0 0 γ
0 β δ 0

⎞
⎟⎟⎠ .

The characteristic polynomial of Φ is P (Φ) = x4 − 2(αβ + γδ)x2 + (αβ − γδ)2.
The second coefficient −2(αβ + γδ) can be interpreted as the Hopf differential of
the associated harmonic map. The square root of the fourth coefficient αβ − γδ is
usually called the Pfaffian. It will be important in Sections 4 and 7.
• The Hermitian metric solution of Hitchin’s equation (3.1) is the tensor product

H = H1 ⊗H2 = diag( h−1k−1, hk−1, h−1k, hk ).
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• With respect to the local holomorphic frame {e1 ⊗ e2, e1 ⊗ e∗2, e
∗
1 ⊗ e2, e

∗
1 ⊗ e∗2},

the flat SO0(2, 2) connection is given by ∇C = d+H−1∂H + Φ+ Φ∗H . From now
on, all the computations are given with reference to this frame.

The covariant derivatives of ∇C with respect to the directions ∂
∂z and ∂

∂z̄ are:

∇C
∂
∂z

= ∂ +H−1∂H +Φ

= ∂ +

⎛
⎜⎜⎝
∂ log(h−1k−1) γ α 0

δ ∂ log(hk−1) 0 α
β 0 ∂ log(h−1k) γ
0 β δ ∂ log(hk)

⎞
⎟⎟⎠ ,

∇C
∂
∂z̄

= ∂̄ +Φ∗H = ∂̄ +

⎛
⎜⎜⎝

0 h2δ̄ k2β̄ 0
h−2γ̄ 0 0 k2β̄
k−2ᾱ 0 0 h2δ̄
0 k−2ᾱ h−2γ̄ 0

⎞
⎟⎟⎠ .

. • The bilinear form and the real structure are given by:

QC = ω1 ⊗ ω2 =
1

2

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

τ : EC �

⎛
⎜⎜⎝
v1
v2
v3
v4

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 0 0 hk
0 0 h−1k 0
0 hk−1 0 0

h−1k−1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
v̄1
v̄2
v̄3
v̄4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

hkv̄4
h−1kv̄3
hk−1v̄2

h−1k−1v̄1

⎞
⎟⎟⎠ ∈ EC.

The real structure τ leaves invariant the two sub-bundles LN ⊕ L−1N−1 and
LN−1 ⊕ L−1N . Denote by F1 the real part of LN−1 ⊕ L−1N , and by F2 the real
part of LN ⊕ L−1N−1, which are the real sub-bundles mentioned in Section 2.

Proposition 3.2. The vector bundle E splits as E = F1 ⊕ F2, a direct sum of
two rank 2 sub-bundles, where F1 has Euler class |e1 − e2| and F2 has Euler class
|e1 + e2|. The direct sum is Q-orthogonal, F1 is time-like and F2 is space-like.

We should notice that the sub-bundles F1, F2 are orientable, but they don’t come
with a natural orientation. For this reason, the sign of their Euler number is not
well defined, only the absolute value is well defined.

Proof. We can write an isomorphism between LN and F2 as real vector bundles:

LN � v → v + τv ∈ F2.

Hence the Euler class of F2 is the same as the Euler class of LN , a complex line
bundle of degree (e1+ e2)/2. Similar argument works for F1. The rest follows from
an easy computation, since Q and τ are both explicit. �

Now we can finally define the circle bundle U mentioned in the previous section:

U = {v ∈ F1 | Q(v, v) = 1}.
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4. The pull-back metrics

In this section we need to analyze more deeply the structure of the ρi-equivariant

harmonic map ψi from Σ̃ to the hyperbolic plane H. Denote by gH the hyperbolic
metric on H, with constant curvature −1, and by Vol(gH) its volume form. The
2-tensors ψ∗

i gH and ψ∗
iVol(gH) are π1(Σ)-invariant, hence they descend to 2-tensors

on Σ that we will denote by gi and Vol(gi). We will call gi the pull-back metric,
even if it is only a symmetric positive semi-definite 2-tensor that can be degenerate
at some points.

We will call the anti-symmetric 2-tensor Vol(gi) the pull-back volume form, even
if it is not in general a volume form, because it can have zeros and changes of sign.
The Euler number ei of the representation ρi is given by (see [3, sec. 3.5]):

(4.1) ei =
1

2π

∫
Σ

Vol(gi).

Now we express gi and Vol(gi) in terms of the Higgs bundle data. The following
theorem is new only for non-Fuchsian representations. For Fuchsian representations
in SL(2,R), see [12] and [26].

Theorem 4.1. (1) The pull-back metric gi is given by

g1 = 4αβdz2 + 4(k2|β|2 + k−2|α|2)dzdz̄ + 4ᾱβ̄dz̄2,

g2 = 4γδdz2 + 4(h2|δ|2 + h−2|γ|2)dzdz̄ + 4γ̄δ̄dz̄2.

(2) The pull-back volume form Vol(gi) is given by

Vol(g1) = 4(k−2|α|2 − k2|β|2)dx ∧ dy,

Vol(g2) = 4(h−2|γ|2 − h2|δ|2)dx ∧ dy.

Proof. We prove the theorem only for ψ1, here denoted for simplicity by ψ, the case
of ψ2 being similar. The symmetric space SL(2,C)/SU(2) can be realized as an
open set inside SL(2, C) as the space of Hermitian positive definite 2×2 matrices of
determinant 1. It is of constant curvature −1, equipped with the following metric:
for any two X,Y ∈ TASL(2,C)/SU(2) = {Hermitian trace free 2× 2 matrices},

〈X,Y 〉A := 1
2 tr(A

−1XA−1Y ).

Now we explain the relation between the Hermitian metric and the harmonic
map more carefully. Select a positively oriented unitary frame {s1, s2} of lifted

bundle E over the base point x ∈ Σ̃ which is fixed under the real structure τ1(x).
Parallel translate of the frame using the flat connection gives a global section of the
unitary frame bundle, also denoted {s1, s2}, which is fixed under the real structure
τ1. The Hermitian metric on E gives a ρ-equivariant harmonic map as follows:

ψ : Σ̃ → SL(2,C)/SU(2), y �−→ {(H(si, sj))}i,j=1,2.

As in the previous section, we also have a local holomorphic frame {e, e∗}. Denote
the local frame change M such that (s1, s2) = M(e, e∗). The Hermitian metric H
and the harmonic map ψ are then locally related as ψ = M̄ tHM = M̄ t

(
k−1 0
0 k

)
M .

And the Higgs field and the differential of ψ are related by (see page 375 in [4]),

− 1
2ψ(z)

−1dψ = M−1(φdz + φ∗dz̄)M. By reality, the image of ψ lies in a subset of
SL(2,C)/SU(2) as an embedded hyperbolic plane H, denoted as N ,

N =

{(
u v
v̄ u

)
,where u,w ∈ R, v ∈ C, u2 − |v|2 = 1

}
.
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Hence the pull-back metric of ψ is

g1 = 〈ψz, ψz〉 dz2 + 2 〈ψz, ψz̄〉 dzdz̄ + 〈ψz̄, ψz̄〉 dz̄2

= 2 tr(φ1φ1)dz
2 + 4 tr(φ1φ

∗
1)dzdz̄ + 2 tr(φ∗

1φ
∗
1)dz̄

2,

Part (1) now follows from a direct computation.
For part (2), at a point A ∈ N , there exists a g ∈ SL(2,C) such that A = ḡtg,

and the invariant volume form Vol(gH) is σ
∗
1 ∧ σ∗

2 , where{
σ1 = ḡt ( 0 1

1 0 ) g, σ2 = ḡt
(

0 i
−i 0

)
g
}
,

is a positively oriented orthonormal frame. Note that the volume form does not
depend on the choice of g.

From the expression ψ(z) = M̄ t
(
k−1 0
0 k

)
M , one can write ψ(z) = ḡtg, where

g =
(

k− 1
2 0

0 k
1
2

)
M , and hence

{
σ1 = M̄ t ( 0 1

1 0 )M,σ2 = M̄ t
(

0 i
−i 0

)
M

}
is a positively

oriented orthonormal basis at ψ(z). Denote

u1dx+ u2dy = φ1dz + φ∗
1dz̄ =

(
0 α
β 0

)
dz +

(
0 k2β̄

k−2ᾱ 0

)
dz̄

=
(

0 α+k2β̄

β+k−2ᾱ 0

)
dx+ i

(
0 α−k2β̄

β−k−2ᾱ 0

)
dy;

then − 1
2ψx = ψ(z)(− 1

2ψ(z)
−1ψx) = M̄ tHu1M , similarly, − 1

2ψy = M̄ tHu2M.

Moreover, we have Hu1 =
(

0 k−1α+kβ̄

kβ+k−1ᾱ 0

)
, Hu2 = i

(
0 k−1α−kβ̄

kβ−k−1ᾱ 0

)
.

Let k−1α + kβ̄ = a + bi, i(k−1α − kβ̄) = c + di. Therefore − 1
2ψx = aσ1 +

bσ2,− 1
2ψy = cσ1 + dσ2, and then the pull-back volume form is

ψ∗Vol(gH) = Vol(gH)(ψx, ψy)dx ∧ dy = σ∗
1 ∧ σ∗

2 (2aσ1 + 2bσ2, 2cσ1 + 2dσ2) dx ∧ dy

= (4ad− 4bc)dx ∧ dy = 4�((k−1α+ kβ̄)(k−1ᾱ− kβ))dx ∧ dy

= 4(k−2|α|2 − k2|β|2)dx ∧ dy. �

5. Construction of AdS 3-manifolds

We say that the metric g1 strictly dominates the metric g2 if g1 − g2 is positive
definite. In this case let us write g1 > g2. This condition depends on ρ1, ρ2, and on
the choice of Σ. In this section we will prove the following theorem.

Theorem 5.1. Let S be a closed surface. Given two representations ρ1, ρ2 and
a conformal structure Σ such that g1 > g2, there exists an AdS structure with
holonomy ρ1 ⊗ ρ2 on a circle bundle U over S with Euler class |e1 − e2|.

With Theorem 5.1 we can construct AdS structures on all the circle bundles with
even Euler class between 2 and 2g − 2. Our proof of the theorem gives a way to
express the AdS metric in terms of coordinates on the manifold U depending on
the solutions of Hitchin’s equation. Using this we can easily see some properties of
these structures, as we will see in the next sections.

Proof. We use the circle bundle U defined in the end of Section 3 and consider the
pull-back bundle Mρ̄ → U . Next we analyze the tautological section s : U → Mρ̄

following the plan sketched in Section 2. We will prove that given two represen-
tations ρ1, ρ2 and a complex structure Σ such that g1 > g2, the section s is a
transverse section. This proves that there exists an AdS structure with holonomy
ρ1 ⊗ ρ2.
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We need to write the equations of U as a subset of E. Let v ∈ U . We have

v =

⎛
⎜⎜⎝
0
ν
ω
0

⎞
⎟⎟⎠ , τv =

⎛
⎜⎜⎝

0 0 0 hk
0 0 h−1k 0
0 hk−1 0 0

h−1k−1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0
ν̄
ω̄
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
h−1kω̄
hk−1ν̄

0

⎞
⎟⎟⎠ .

By reality, we have that v = τv, therefore ω = hk−1ν̄. Since Q(v, v) = 1, we have

that νω = 1. Hence |ν| = (hk−1)−
1
2 .

We give a local coordinate description of the tautological section s. We can cover
Σ with little open sets Vi bi-holomorphic to the unit disc {|z| < 1}. Locally over

every Vi, U is {|z| < 1}×S1. Denote the function g = (hk−1)−
1
2 . Given coordinates

(x, y, θ), where z = x+ iy, we write the section s and its derivatives at v:

s(v) =

⎛
⎜⎜⎝

0
geiθ

g−1e−iθ

0

⎞
⎟⎟⎠ , ∇ ∂

∂θ
s =

⎛
⎜⎜⎝

0
igeiθ

−ig−1e−iθ

0

⎞
⎟⎟⎠ ,

∇ ∂
∂z
s =

⎛
⎜⎜⎝
X
0
0
Y

⎞
⎟⎟⎠+ c∇ ∂

∂θ
s, ∇ ∂

∂z̄
s =

⎛
⎜⎜⎝

Z
0
0
W

⎞
⎟⎟⎠+ c̄∇ ∂

∂θ
s,

where c = ig−1∂g, and

X = γgeiθ + αg−1e−iθ, Y = βgeiθ + δg−1e−iθ,

Z = h2δ̄geiθ + k2β̄g−1e−iθ, W = k−2ᾱgeiθ + h−2γ̄g−1e−iθ.

The transversality condition for the section s is equivalent to the condition that
at every point (x, y, θ) ∈ U , the derivatives ∇ ∂

∂x
s,∇ ∂

∂y
s,∇ ∂

∂θ
s form a basis of

the tangent space to the fiber of Mρ̄ at s(x, y, θ), or equivalently, the four vectors
s,∇ ∂

∂x
s,∇ ∂

∂y
s,∇ ∂

∂θ
s are linearly independent.

Suppose that there exists a, b, c, d ∈ R such that

a∇ ∂
∂x
s+ b∇ ∂

∂y
s+ c∇ ∂

∂θ
s+ ds = 0.

Written ∇ ∂
∂z
s,∇ ∂

∂z̄
s instead of ∇ ∂

∂x
s,∇ ∂

∂y
s, we have

(a+ bi)∇ ∂
∂z
s+ (a− bi)∇ ∂

∂z̄
s+ c∇ ∂

∂θ
s+ ds = 0.

Taking the first entry of the vector of (a+ bi)∇ ∂
∂z
s+(a− bi)∇ ∂

∂z̄
s+ c∇ ∂

∂θ
s+ds,

(5.1) (a+ bi)X + (a− bi)Z = 0.

If the metrics satisfy g1 > g2, by Lemma 5.2 proven below, we obtain that a = b = 0.
Therefore c∇ ∂

∂θ
s+ ds = 0, which clearly implies that c = d = 0. �

Lemma 5.2. Suppose that the pull-back metrics satisfy g1 > g2. Then, if u ∈ C

satisfies uX + ūZ = 0, we have u = 0.

Proof. We carry out the following direct computation:

uX + ūZ = 0 ⇒ u(γgeiθ + αg−1e−iθ) + ū(h2δ̄geiθ + k2β̄g−1e−iθ) = 0

⇒ |uγgeiθ + ūh2δ̄geiθ|2 = |uαg−1e−iθ + ūk2β̄g−1e−iθ|2

⇒ |uh−1γ + ūhδ̄|2 = |uk−1α+ ūkβ̄|2 since g = (hk−1)−
1
2

⇒ γδu2 + |u|2(h−2|γ|2 + h2|δ|2) + δ̄γ̄ū2 = αβu2 + |u|2(k−2|α|2 + k2|β|2) + ᾱβ̄ū2.
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Applying Theorem 4.1

⇒ g1

(
u
∂

∂z
, ū

∂

∂z̄

)
= g2

(
u
∂

∂z
, ū

∂

∂z̄

)
=⇒ u = 0, since g1 > g2. �

6. Comparison of domination conditions

In this section we will discuss some consequences of the condition of domination
between pull-back metrics we introduced in the previous section and how this con-
dition is related to the condition of domination defined by Salein. In this way we
see how our Theorem 5.1 gives a new proof of Salein’s theorem in [18].

Proposition 6.1. Let ρ1, ρ2 be two representations such that g1 > g2. Then ρ1 is
Fuchsian, |e1| = 2g−2, the harmonic map ψ1 is a diffeomorphism, g1 is a hyperbolic
metric, ρ2 is not Fuchsian, and |e2| < 2g − 2.

Proof. If g1 > g2, then g1 is positive definite. Hence ψ1 is a local diffeomorphism.
Since ψ1 is also ρ1-equivariant, it is the developing map of a hyperbolic structure on
S with holonomy ρ1. Hence ρ1 is a Fuchsian representation, and, by [8], |e1| = 2g−2.
As the developing map of a hyperbolic structure, ψ1 is a diffeomorphism.

If ρ2 were also Fuchsian, the condition g1 > g2 would give two hyperbolic metrics
on the same surface with different areas, which is impossible, hence |e2| < 2g−2. �

This condition of strict domination between the pull-back metrics is very related
to another notion of domination between the two representations ρ1, ρ2: we say that
ρ1 strictly dominates ρ2 if there exists a (ρ1, ρ2)-equivariant map f : H → H with
Lipschitz constant strictly smaller than 1. The latter notion was introduced in [18]
and it only depends on the two representations ρ1, ρ2. The following proposition
comes from Tholozan [21] and Deroin-Tholozan [5].

Proposition 6.2. Given two representations ρ1, ρ2 in SL(2,R), there exists a con-
formal structure Σ such that g1 > g2 if and only if ρ1 strictly dominates ρ2.

Proof. If there exists a Σ such that g1 > g2, we have seen in the previous proposition
that ψ1 is invertible. The map ψ2 ◦ ψ−1

1 : H → H is (ρ1, ρ2)-equivariant and has
Lipschitz constant strictly smaller than 1.

The converse is the interesting implication. It is proved in [21] that if ρ1 strictly
dominates ρ2, there exists a unique holomorphic structure Σ such that the corre-
sponding Higgs bundles have αβ = γδ. In this case, it is proved in [5] that the
difference of the pull-back metrics is positive definite. �

Combining Theorem 5.1 and Proposition 6.2, we obtain a new proof of the fol-
lowing theorem, originally proven by Salein in [18], and later reproven in [10], which
is one of the main theorems in the theory of AdS 3-manifolds:

Theorem 6.3. Let S be a closed surface. Given two representations ρ1, ρ2 of π1(S)
in SL(2,R) such that ρ1 strictly dominates ρ2, there exists an AdS structure with
holonomy ρ1 ⊗ ρ2 on a circle bundle U over S with Euler class |e1 − e2|.

7. Minimal immersions and fibers of the circle bundle

Using the above construction, we can understand how the circle fibers of U
are related to the AdS structure. Let z ∈ Σ, and let C be the fiber of z in U ,
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topologically a circle. By fixing a base point c ∈ C, the circle C becomes a loop in

U . Let C̃ be a lift of this loop to the universal covering Ũ . We now describe the

curve D(C̃).

Theorem 7.1. The developing image D(C̃) is a time-like geodesic loop that turns
once around M.

Proof. We can compute the tangent vector along the fiber and its derivative:

s=

⎛
⎜⎜⎝

0
geiθ

g−1e−iθ

0

⎞
⎟⎟⎠ , ∇ ∂

∂θ
s=

⎛
⎜⎜⎝

0
igeiθ

−ig−1e−iθ

0

⎞
⎟⎟⎠ , ∇ ∂

∂θ
∇ ∂

∂θ
s = −

⎛
⎜⎜⎝

0
geiθ

g−1e−iθ

0

⎞
⎟⎟⎠ = −s.

From the second formula Q(∇ ∂
∂θ
s,∇ ∂

∂θ
s) = 1 > 0, hence the fiber is time-like, from

the third formula, it is a geodesic. The flat connection on p∗E is the pull back of
a flat connection on E, hence it is trivial on the fiber. So the explicit formula for s

shows that D(C̃) is a loop and it turns once around M. �
Remark 7.2. Gueritaud and Kassel in [10] also found a parametrization of AdS
manifolds as circle bundles such that the circle fibers develop to time-like geodesics.
It is not clear if our parametrization is the same as theirs.

We can use the structure of the circle fibers of our AdS structure on U to con-
struct and characterize minimal immersions of Riemann surfaces into quadrics. This
is a new result of this paper. We remark that this construction is not restricted to
the case where the section is transverse.

The group O(2, 2) acts on Gr(2, 4), the Grassmannian of 2-planes in R4, preserv-
ing the open subset Gr+(2, 4), the Grassmannian of time-like 2-planes in (R4, Q).
The bundle E over Σ has structure group O(2, 2), by changing fiber we get the
bundle E(Gr+(2, 4)) with fiber Gr+(2, 4) and the same structure group. This bun-
dle inherits also a flat structure. Every circle fiber of U corresponds to a time-like
geodesic, i.e., to a time-like 2-plane in the corresponding fiber of E. This gives a
section of E(Gr+(2, 4)). As in Section 2, it induces a ρ1 ⊗ ρ2-equivariant map

f : Σ̃ → Gr+(2, 4).

We are going to show that f is harmonic and that, under some hypothesis, it is
also a minimal immersion. Before we state the exact result, we need to introduce
a pseudo-Riemannian metric on Gr+(2, 4).

The Plücker embedding identifies Gr+(2, 4) with a subset of a projective space:

Gr+(2, 4) � Span(v, w) → [v ∧ w] ∈ P
(
Λ2

R
4
)
.

This projective embedding can be lifted to an embedding in Λ2R4. Fix two inde-
pendent space-like vectors w1, w2 and an orientation of R4. The lifted embedding
is given by

Gr+(2, 4) � Span(v1, v2) → v1 ∧ v2 ∈ Λ2
R

4,

where v1, v2 are Q-orthonormal and v1, v2, w1, w2 are a positively oriented basis of
R4. The element v1 ∧ v2 does not depend on the choice of a Q-orthonormal basis.

The wedge product induces a symmetric bilinear form v∧w on Λ2R4 of signature
(3, 3). This restricts to a signature (2, 2) pseudo-Riemannian metric on the sub-
manifold Gr+(2, 4) that does not depend on the choice of w1, w2 and the orientation
of R4, hence it is preserved by the action of O(2, 2).
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We remark that, by a quite general result about real projective structures (see
[1, Lemma 3.5.0.1]) the image of the differential of f lies in a definite subspace of
the tangent space to Gr+(2, 4) if and only if the section is transverse.

Now let us prove that the map f is harmonic. Locally, the map f can be written
as f = s ∧∇ ∂

∂θ
s. For simplicity, we will denote ∇ ∂

∂θ
s,∇ ∂

∂z
s,∇ ∂

∂z̄
s by sθ, sz, sz.

Theorem 7.3. The map f is harmonic, and it is the unique ρ1 ⊗ ρ2-equivariant

harmonic map from Σ̃ to Gr+(2, 4).

Proof. Since the domain of the map f is 2-dimensional, the condition that f is

harmonic is equivalent to ∇̃z̄fz = 0, where ∇̃ is the Levi-Civita connection on
Gr+(2, 4) (see [11] page 425). We can compute fz:

fz = (s ∧ sθ)z = sz ∧ sθ + s ∧ sθ,z.

Differentiating sz with respect to θ, sz,θ =

⎛
⎜⎜⎝

iγgeiθ − iαg−1e−iθ

0
0

iβgeiθ − iδg−1e−iθ

⎞
⎟⎟⎠− cs, using

∇ ∂
∂θ
∇ ∂

∂θ
s = −s.

In the coordinates given by the six minors of a 2× 4 matrix, we have

sz ∧ sθ = (iγg2e2iθ + iα,−iγ − iαg−2e−2iθ, 0, 0,−iβg2e2iθ − iδ, iβ + iδg−2e−2iθ),
s ∧ sθ,z = (−iγg2e2iθ + iα,−iγ + iαg−2e−2iθ, 0, 0, iβg2e2iθ − iδ, iβ − iδg−2e−2iθ),

fz = (2iα,−2iγ, 0, 0,−2iδ, 2iβ), and since it is holomorphic, ∇̃z̄fz = 0.
For uniqueness, note that Gr+(2, 4) is isometric to (H2, h)× (H2,−h) (see Tor-

ralbo [25]). The harmonicity of a map into a product is equivalent to the harmonic-
ity on each factor. By Donaldson [6], the ρi-equivariant harmonic maps into (H2, h)
are unique. Hence the equivariant harmonic map into Gr+(2, 4) is unique. �

In the next theorem we will prove that the map f is a minimal immersion if and
only if Σ is the conformal structure with vanishing Pfaffian (see Section 4). This
gives a geometric interpretation of the conformal structure with vanishing Pfaffian
and it gives a link between equivariant minimal immersions and AdS structures.
This relationship between conformality and the vanishing Pfaffian is in contrast
with the case for Sp(4,R), studied by Baraglia [1], where the conformality comes
from the vanishing of the Hopf differential.

Theorem 7.4. The harmonic map f is conformal if and only if αβ = γδ. In this
case f is a ρ1⊗ ρ2-equivariant minimal immersion into Gr+(2, 4). Moreover, there

exists a ρ1 ⊗ ρ2-equivariant minimal immersion f : S̃ → Gr+(2, 4) if and only if ρ1
strictly dominates ρ2. In this case, the minimal immersion is unique.

Proof. The condition that the map f is conformal is equivalent to 〈fz, fz〉 = 0,
where the pairing is the pseudo-Riemannian structure on Gr+(2, 4),

〈fz, fz〉 = fz ∧ fz = 2sz ∧ sθ ∧ s ∧ sθ,z

= 2det

⎛
⎜⎜⎝
γgeiθ + αg−1e−iθ 0 0 iγgeiθ − iαg−1e−iθ

0 igeiθ geiθ 0
0 −ig−1e−iθ g−1e−iθ 0

βgeiθ + δg−1e−iθ 0 0 iβgeiθ − iδg−1e−iθ

⎞
⎟⎟⎠ dVolR4

= −8(αβ − γδ)dVolR4 .
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Hence f is conformal if and only if αβ = γδ. This also gives the “if” part of the
second statement.

To see the “only if” part, given a ρ1 ⊗ ρ2-equivariant minimal immersion u into
Gr+(2, 4), let Σ be the pull-back conformal structure on the surface. Then u is

an equivariant harmonic map from Σ̃ into Gr+(2, 4). By the uniqueness of such
harmonic maps, u agrees with the f constructed above. This f is conformal, hence
αβ = δγ. By the result of Deroin-Tholozan [5], ρ1 strictly dominates ρ2. The
uniqueness of minimal immersions follows from the uniqueness of the conformal
structure with vanishing Pfaffian for a given representation by Tholozan [21]. �

8. Volume of AdS 3-manifolds

The computation of the volume of closed AdS 3-manifolds was Question 2.3
in the list of open problems [2]. It was first answered some months before us in
Tholozan’s thesis [22]; see also [23]. Labourie [17] then related the volumes of AdS
3-manifolds with the Chern-Simons invariants. Here we give a different proof of the
formula for the volume, based on our construction of the AdS structures.

Theorem 8.1. The volume of M/ρ1 ⊗ ρ2 is π2|e1 + e2|.

Note here |e1| = 2g − 2. This formula differs from the one in [22, Lemma 4.5.2]
by a factor 2 because the model space used there is a quotient of M by Z/2Z.

Proof. The quotient M/ρ1⊗ρ2 is the AdS structure we constructed on U in Section
5. Denote G as the matrix presentation of the Lorentzian metric tensor in terms of
the basis sz, sz̄, sθ. The volume form is dVol = |

√
| detG|dz ∧ dz̄ ∧ dθ|.

By direct calculation, we see that Q(sθ, sθ) = 1, Q(sz, sθ) = c, Q(sz̄, sθ) = c̄,
Q(sz, sz) = −XY + c2, Q(sz̄, sz̄) = −ZW + c̄2, Q(sz, sz̄) = − 1

2 (XW + Y Z) + cc̄.

Hence G =

⎛
⎝ −XY + c2 − 1

2 (XW + Y Z) + cc̄ c
− 1

2 (XW + Y Z) + cc̄ −ZW + c̄2 c̄
c c̄ 1

⎞
⎠, and then

det(G) = XY · ZW − 1

4
(XW + Y Z)2 = −1

4
(XW − Y Z)2.

Therefore the volume of an AdS 3-manifold is∫
U

dVol =
1

2

∫
U

|XW − Y Z|dz ∧ dz̄ ∧ dθ.

The non-degeneracy of volume form implies XW − Y Z has constant sign on U ,

=
1

2

∣∣∣∣
∫
U

(XW − Y Z)dz ∧ dz̄ ∧ dθ

∣∣∣∣
=

1

2

∣∣∣∣
∫
Σ

∫
S1

((γᾱg2e2iθk−2 + |α|2k−2 + |γ|2h−2 + γ̄αh−2g−2e−2iθ)

− (βδ̄g2e2iθh2 + |δ|2h2 + |β|2k2 + δβ̄k2g−2e−2iθ))dz ∧ dz̄ ∧ dθ

∣∣∣∣
= 2π

∣∣∣∣
∫
Σ

((|α|2k−2 − |β|2k2) + (|γ|2h−2 − |δ|2h2))dx ∧ dy

∣∣∣∣ .
Applying Theorem 4.1 and equation (4.1),

=
1

2
π

∣∣∣∣
∫
Σ

Vol(g1) + Vol(g2)

∣∣∣∣ = π2|e1 + e2|. �
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Schlenker, and A. Zeghib, Some open questions on Anti-de Sitter geometry, arXiv:1205.6103.
[3] Marc Burger, Alessandra Iozzi, and Anna Wienhard, Higher Teichmüller spaces: from

SL(2,R) to other Lie groups, Handbook of Teichmüller theory. Vol. IV, IRMA Lect. Math.
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